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Abstract

Public-key cryptography is based on mathematical problems believed to be hard to solve. In
this document, we evaluate the hardness of the main computational problems used in cryptog-
raphy. For each identified problem, we provide the best algorithm known for solving it, and
the corresponding performance records. This in turn enables us to recommend key-lengths for
which solving the problem is infeasible using today’s technology.

The newest results on Discrete Logarithms in finite fields have been incorporated.
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Chapter 1

Introduction

By definition, there cannot be unconditional security for asymmetric cryptography: one needs to
make computational assumptions, which are more or less well-defined and more or less plausible.
The aim of this document is to study the hardness of computational problems which arise in
asymmetric cryptography. This includes:

• Integer factorization, on which RSA is based.

• The RSA problem.

• Discrete logarithm in finite fields. Many cryptosystems have a security based on the discrete
logarithm problem in finite fields, including DSA, torus-based cryptosystems and XTR.

• Discrete logarithm in elliptic curves.

• Lattice basis reduction, on which the security of the NTRU cryptosystem is based.

• Systems of multivariate polynomial equations over finite fields.

• Error-decoding codes.

Estimating the required key-size for public-key cryptosystems is harder than for good secret-
key cryptosystems that can only be broken by a brute-force attack. First, the required security
level must be determined. Then one considers the best algorithm known that breaks the cryp-
tosystem and estimate its computational cost. This in turn enables one to determine the
required key-size.

We consider various security levels: 64-bit security is broken. 80 to 90-bit security is on the
edge of what is not doable today. 128-bit is safe today, and 256-bit should remain secure for a
long time.

For each computational problem on which a given public-key cryptosystem is based, we recall
the best existing algorithms that solve such problems, and study the relationships between those
problems. For each identified problem, we use the following framework :

1. Problem statement.

2. Parameters of the problem.

3
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3. Complexity class (with optionally the quantum complexity class).

4. Best algorithm known

5. Performance records.

6. Recommended key-length

7. Related open-problems.



Chapter 2

Integer factorization

2.1 Problem statement

Let N > 1 be an integer which is not a prime. Then there is an integer 1 < a < N such that a
divides N . The problem is to find such a factor a.

Usually it is easy to show that N is composite by compositeness tests like Miller-Rabin (see
[Co]). If this is not easy, then N might be prime which can be proved by primality tests like
the Jacobi Sum Test or the Elliptic Curve Test (see [Co]).

Depending on the specific properties of the problem, there are different useful algorithms.
The choice of an algorithm depends on many circumstances: the size of N , whether or not one
expects N to have many factors or a small factor, if one needs just one factor or all of them,
etc. Also if the main purpose is factoring RSA moduli, several algorithms are worth looking at,
since some of them are intensely used for smoothness testing within other algorithms.

The hardest case of the problem is to factor a number N which is the product of two large
primes of similar size. The hardness of that problem is crucial for some important asymmetric
primitives (RSA) and protocols. We will focus on this problem here.

2.2 Parameters of the problem

The only parameter of the problem is the number N . If N has a small factor, one might use trial
division, the Pollard-ρ-Method, the Pollard-(p − 1)-Method resp. the Pollard-(p + 1)-Method
and the Elliptic Curve Method (ECM, see [Co]) together with varying optimizations. For these
methods the relevant parameter is (the size of) the smallest factor. ECM has been used to find
factors up to the size of 219 bit (see [ECM]). To find the larger factors of N , one should use
other methods. The relevant parameter is then the size of N .

The Multiple Polynomial Quadratic Sieve (MPQS) is good for factoring integers up to 80
or 100 digits, larger numbers should better be factored with the General Number Field Sieve
(GNFS). For performance reasons, implementations of GNFS for different sizes of N should be
different.

5
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2.3 Complexity class

An integer N can be factored in subexponential time with respect to its size. More precisely
let

LN (α, β) := e(β+o(1))(log N)α(log log N)1−α
.

Then for a suitable choice of parameters in GNFS, the complexity is heuristically

LN

(
1
3
,

3

√
64
9

)
.

If N has a special form, e.g. N = ab + c with small numbers a, b and c, then two certain
polynomials used in GNFS have small coefficients and therefore small values, which speeds up
everything. The sieve is then called Special Number Field Sieve (SNFS). For a suitable choice
of parameters in SNFS, the complexity is heuristically

LN

(
1
3
,

3

√
32
9

)
.

The current record for SNFS is the factorization of 2821 + 2411 + 1, which is a number with 248
digits (see [SNFS248]).

Using a quantum computer of size O(log N) qubits to factor N , one needs only O((log N)3)
operations. The quantum computer is used to find the order of some random x modulo N . It
is still necessary to do some calculations classically.

2.4 Best algorithm known

Roughly speaking, the best algorithm known to factor integers of more than 100 digits is GNFS.
The algorithm heavily depends on the choice of parameters. The hard parts of GNFS are the
sieving step and the matrix step. Talking about more than 700 bit, it would probably be best
to support general purpose computers with special hardware in these two steps.

We briefly report on the state of the art in special purpose hardware for factoring. A good
summary of the latest results and proposals on special-purpose hardware for cryptanalytic
attacks can be found in the contributions to SHARCS 2005 (see [SHW]) and in the ECRYPT
deliverable on hardware crackers (see [ECR2]). For a list of suggested cryptanalytic devices
with a strong focus on GNFS see also [Tro].

Before the sieving starts, one chooses two polynomials with certain properties and small
coefficients. If N is of a special form, these polynomials can have exceptionally small coefficients;
we then talk about SNFS. Otherwise one needs to extensively search for good polynomials.

The next step is the sieving which is the hardest part. Here it is important to find a good
balance between the pure sieving and the cofactorization which can be done with ECM in special
hardware (see [FKPPPSS]). Asymptotically it is best to extensively use ECM and hardly any
sieving in the sieving step. For 1024-bit-numbers extensive sieving and less ECM is better. To
do the sieving of 1024-bit-numbers there are proposals like TWIRL (see [ST]) which rely on
many giant monolytic wafers. Cost estimates lie in the millions of US dollars, but they seem
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not to be realizable with today’s technology. The proposal SHARK (see [FKPPPS]) focuses on
realizable technology (based on a modular architecture using many small ASICs) and claims
costs of 200 million US dollars. It uses lattice sieving which gives better results than line sieving
(see [FK2]).

Similar problems arise for the matrix step which consists of solving a large matrix over
F2. This can be done with the Block-Wiedemann algorithm. The expensive part consists of
many matrix-vector multiplications. One needs lots of memory and efficient sorting. The latest
proposal is ”Scalable Hardware for Sparse Systems of Linear Equations” (see [GSST]). More
sieving simplifies the matrix step.

Already now it seems possible to factor 1024-bit-numbers, only it is very expensive. Using
general purpose computers without the support of special hardware, factoring 1024-bit-numbers
costs thousands of millions of US dollars.

2.5 Performance records

The world record in factoring of Franke, Kleinjung et al. is RSA-200 (a 663-bit-number, see
[FK3]). It used a software implementation of GNFS with lattice sieving and was done with
several linux computers working in parallel and a cluster for solving the matrix. The time for
the sieving corresponds to about 55 years on a single 2.2 GHz Opteron CPU (actual time was
less, of course, since many computers worked in parallel). After simplifications, the matrix had
a size of around 64 million times 64 million with around 11000 million non-zero entries. The
matrix step was performed on a cluster of 80 2.2 GHz Opterons connected via a Gigabit network
and took about 3 months.

Their previous record was reached one and a half years earlier (a 576-bit-number, see [FK1]).
The amount of work for searching two good polynomials corresponds to less than a year on a
1 GHz PIII CPU. The time for the sieving corresponds to about 13 years on a 1 GHz PIII
CPU. After simplifications, the matrix had a size of more than 14 million times 14 million with
more than 3000 million non-zero entries. It was solved on an Alpha cluster with 64 processors
running at 616 MHz. Each processor needed less than 300 MB RAM. Solving the matrix took
12 days.

2.6 Recommended key-length

Most cryptographic products currently use a key-length of 1024 bit for cryptosystems based on
the difficulty to factor integers. With enough money, i.e. enough computing power and storage,
these cryptosystems seem to be breakable.

It might be questionable to compare RSA key-lengths with symmetric key-lengths. But
it is a reasonable way to give at least some feeling about security levels. Unfortunately such
comparisons always have to be given before a machine has been built to crack a certain key-size.
Therefore the basis for comparisons, namely estimates about the total costs for cracking, leaves
a vast margin for opinions. If precise numbers are given, these should be interpreted as rough
approximations. One might compare the security of 1024 bit RSA to (130 or) 160 bit ECC
which is comparable to (70 or) 80 bit of a symmetric algorithm. Numbers in this range have
been proposed e.g. in [LV]. In [ECR1] ECRYPT suggests the following numbers (security level
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n means that O(2n) operations are needed by the best algorithm to break the system, usually
this is the corresponding key-length of symmetric systems):

security level 48 56 64 80 112 128 160 192 256

RSA 480 640 816 1248 2432 3248 5312 7936 15424

ECC 96 112 128 160 224 256 320 384 512

Several countries suggest to use 2048 bit after the year 2010 (and 256 bit for symmetric
algorithms). Up to now there seems to be no way to factor a 2048 bit RSA modulus (maybe
corresponding to roughly 100 bit symmetric security).

Of course the key-length to be recommended depends on the importance of the data to
be secured. Since recent estimates show that RSA-1024 is within reach, if the information is
interesting enough, one should convert to 2048 or even 4096 bit RSA.

2.7 Related open problems

GNFS is also the most efficient algorithm to solve the discrete logarithm problem in F∗p where
p is prime (see Section 5). After adapting the parameters, a sieving machine built for factoring
can also perform the sieving step for the discrete logarithm problem. The resulting matrix has
to be solved modulo p− 1 instead of modulo 2 which makes the matrix step harder. Therefore
one should sieve more in order to get a smaller matrix for the matrix step.

Acknowledgements:

The eCrypt contributor for this section Christine Priplata (EDIZONE), Colin Stahlke (EDI-
ZONE) and Tanja Lange (RUB).
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Chapter 3

The RSA problem

3.1 Introduction

The RSA problem is the following: given a modulus N , product of two primes p and q, a
public-exponent e, and an element y ∈ Z∗N , find x such that y = xe mod N .

The problem parameters are the following: the bit-size k of N , and the size of the public
exponent e. In practice, one uses small public-exponent in order to speed up RSA encryption
or RSA signature verification. The RSA with small public exponent in studied in more details
in the next sub-section.

The best algorithm known for solving the RSA problem consists in factoring the modulus.
Therefore, the recommended key-size are the same as for the factorization problem.

3.2 Low public exponent

3.2.1 Problem statement:

RSA key pair generation methods have both security and performance requirements. A public
key operation (notably encryption or signature verification) consists of a modular exponentiation
with the public variable e as exponent. Modular exponentiation is computationally intensive,
and its complexity is proportional to both the bitsize and the Hamming weight of the exponent
e. For this reason e = 3, 17 and 65537 are popular, as they are small and have Hamming weight
only 2 (and moreover they are prime, hence with reasonable probability coprime to φ(N), which
is a soundness requirement for RSA).

The question is what this means for the security of the key pair: does this special form of
e help in breaking RSA, i.e. in factoring the modulus (key recovery) or in solving the eth root
problem (message recovery)?

No attacks are known that take advantage of small public exponent in factoring the modulus.
Indeed, such attacks seem unlikely, because an attacker who is given only a modulus can pick a
public exponent at will (without knowing the corresponding private exponent or any property
of it), and produce as many plaintext-ciphertext pairs as he wants.

The only known result relating the size (more precisely: the smoothness) of the public
exponent e to factoring the modulus is that of Boneh and Venkatesan [BV]. They show that
any algebraic polynomial time oracle algorithm that, given N = pq and a cube root oracle

11
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modulo N , factors N , can be converted into a non-oracle factorization algorithm. This shows
that a cube root (or other smooth eth root) algorithm does not help in factoring, and thus that
message recovery with such a small public exponent might be easier than factoring. However,
efficient cube root algorithms are not known.

There exist message recovery attacks that are effective for small public exponents, such
as H̊astad’s broadcast attacks on linearly related messages [H], and Coppersmith’s attacks on
messages with partially known plaintext or small random padding [C]. These attacks can usually
be thwarted by adding sufficient redundancy (random padding) to the plaintext.

We can formulate the following hardness problems:

• The hardness of factoring the modulus N does not depend on properties of the public
exponent e, as long as no knowledge on the private exponent is available.

• The hardness of message recovery from knowledge of a number of known ciphertexts.

• The hardness of extracting eth roots modulo N , for small e > 2, is as difficult as for
arbitrary e.

3.2.2 Parameters of the problem:

The parameters of the problem are the bitsize k of the modulus N , the bitsize of the public ex-
ponent e, the Hamming weight h of the public exponent e, and the number of known ciphertexts
corresponding to related plaintexts.

3.2.3 Complexity class:

See factoring.

3.2.4 Best algorithm known:

See factoring.

3.2.5 Performance record:

See factoring.

3.2.6 Recommended key-length:

See factoring.

3.2.7 Related open problems:

See factoring.
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3.3 Low private exponent

3.3.1 Problem statement:

As described in the section above on low public exponent RSA, there may be performance
reasons for allowing a private key with a private exponent d that is substantially smaller than
the modulus n, and / or with small Hamming weight.

The first type of attack to worry about is brute force search. This shows that the bitsize of
d should be at least 80. When d has bitsize > 256 then a lower bound for its Hamming weight
is 18 only, and when d has bitsize ≥ 1024 then a lower bound for its Hamming weight is 13 only.
The reason is that

(
n−2
16

)
> 280 when n > 256, and

(
n−2
11

)
> 280 when n ≥ 1024 (we subtract 2

from the bitsize and the Hamming weight, because the most and least significant bits of d will
be 1 typically).

We are not aware of other attacks on low Hamming weight private exponents. But there
exist more clever attacks on low private exponents. The best one to date is that of Boneh and
Durfee [BD]. It shows that there is a polynomial time attack on low private exponent RSA
when d = O(Nα) for α = 1− 1

2

√
2 = 0.292 . . .. Boneh and Durfee give as a heuristic that RSA

might be vulnerable for α up to 1
2 .

Often the CRT-variant of RSA is used to speed up private key operations. This means
that next to the private exponent d the prime factors p, q of the modulus are kept as part
of the private key; the modular exponentiation is done separately modulo p and modulo q,
and the results are then combined into the final answer modulo N by Chinese remaindering.
Asymptotically this gives a speedup factor 4 for full sized d. It is possible to achieve further
speedups by choosing small sized dp = d mod p− 1 and dq = d mod q − 1, or low Hamming
weight dp, dq. There exist attacks on low private CRT-exponents (see [M]), but they work only
in the case of unbalanced modulus factors.

We formulate the following hardness problems:

• The hardness of factoring a k-bit modulus N in the case of a private exponent d that is in
bitsize between 1

2k and k.

• The hardness of factoring the modulus N in the case of a low Hamming weight private
exponent d (say Hamming weight between 20 and half the bitsize of d).

• The hardness of factoring the modulus N in the case of low private CRT exponents and
balanced prime factors po, q.

3.3.2 Parameters of the problem:

The bitsize of the modulus N , and the bitsize and Hamming weight of the private exponent d.

3.3.3 Complexity class:

Polynomial when d = O(N0.292), otherwise see factoring.
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3.3.4 Best algorithm known:

Coppersmith’s method for finding small roots of multivariate polynomials, as employed by
Boneh and Durfee [BD].

3.3.5 Performance record:

For private keys up to N0.28 for 1000-bit RSA the Boneh-Durfee method has been demonstrated
in practice.

3.3.6 Recommended key-length:

Take the private exponent d � N1/2, and with Hamming weight > 20.

3.3.7 Related open problems:

-

3.4 Partial Key Exposure

3.4.1 Problem statement:

When an attacker has enough partial information about the private key, he may be able to
recover the full private key. Several attacks exist, depending on the bitsizes of d and e relative
to the modulus bitsize, and on the amount and position of the known bits. Generally speaking,
the attacks only work when the unknown part of d consists of consecutive bits, i.e. the known
part of d is a combination of least and most significant bits.

The best partial key exposure attacks so far are those of Boneh, Durfee, and Frankel [BDF]
(who describe several partial key exposure attacks for e < N

1
2 ), Blömer and May [BM] (who

extend the attacks of [BDF] to methods that work up to e < N0.725), and Ernst, Jochemsz,
May, and de Weger (who show partial key exposure attacks exist if either e or d is chosen
significantly smaller than N).

The case where both d and e are full size seems not to be vulnerable.

3.4.2 Parameters of the problem:

Size of the modulus N , size of the public exponent e, size of the private exponent d, the amount
of known most significant bits of d, the amount of known least significant bits of d.

3.4.3 Complexity class:

Polynomial time within the attack boundaries, otherwise see factoring.

3.4.4 Best algorithm known:

Most partial key exposure attacks use Coppersmith’s method for finding small modular roots
or small integer roots. The attack that is best, depends on the choice of the size of e and d, as
can be seen in the overview of the currently known attacks in [EJMW].
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3.4.5 Performance record:

Since Coppersmith-like attacks result in asymptotic bounds, it is important to see what one can
obtain in practice. Both [BDF], [BM], and [EJMW] provide experimental results. In [BDF],
it is mentioned that for performance, it is sometimes better to implement an extension of the
Lattice Factoring Method by Boneh, Durfee, and Howgrave-Graham [BDH].

3.4.6 Recommended key-length:

Not relevant. To prevent from this kind of attacks, it is recommended that e and d are chosen at
random (and are thus full size), besides taking sufficient countermeasures against side-channel
attacks.

3.4.7 Related open problems:

-

3.5 RSA assumptions

In the following, we study in more detail the relation between two RSA assumptions: the RSA
one-wayness assumption, already defined above, which consists, given y ∈ ZN , in finding x such
that y = xe mod N , and the RSA partial-domain one-wayness, which consists, given y ∈ ZN ,
in recovering some part of x. The latter assumption arises when proving the security of the
OAEP public-key encryption scheme [FOPS].

3.5.1 Problem statement:

We denote by f the RSA permutation. The security of most RSA-based cryptosystem is based
on the one-wayness of f , which is defined as follows:

- (τ, ε)-one-wayness of f , means that for any adversary A who wishes to recover the pre-
image x of f(x) in time lesser than τ , A’s success probability Succow(A) is upper-bounded by
ε:

Succow(A) = Pr
x

[A(f(x)) = x] < ε

The partial-domain one-wayness and the set partial-domain one-wayness of a permutation
f was defined in [FOPS] :

- (τ, ε)-partial-domain one-wayness of f , means that for any adversary A who wishes
to recover the partial pre-image ω of f(ω, s) in time lesser than τ , A’s success probability
Succpd−ow(A) is upper-bounded by ε:

Succpd−ow(A) = Pr
ω,s

[A(f(ω, s)) = ω] < ε

- (`, τ, ε)-set partial-domain one-wayness of f , means that for any adversary A who
wishes to output a set of ` elements which contains the partial pre-image ω of f(ω, s), in time
lesser than τ , A’s success probability Succs−pd−ow(A) is upper-bounded by ε:

Succs−pd−ow(A) = Pr
ω,s

[ω ∈ A(f(ω, s))] < ε
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As in [FOPS], we denote by Succow(τ), (resp. Succpd−ow(τ) and Succs−pd−ow(`, τ)) the
maximal success probability Succow(A), (resp. Succpd−ow(A) and Succs−pd−ow(A)), over all
adversaries whose running times are lesser than τ . For any τ and ` ≥ 1, we have:

Succs−pd−ow(`, τ) ≥ Succpd−ow(τ) ≥ Succow(τ)

Moreover, by randomly selecting any element in the set returned by the adversary against the
set partial-domain one-wayness, one can break the partial-domain one-wayness with probability
1/`, which gives:

Succpd−ow(τ) ≥ Succs−pd−ow(`, τ)/` (3.1)

3.5.2 Parameters of the problem:

The parameters of the problem are : the modulus size k, the size |e| of the public-exponent,
and the size k1 of the partial pre-image.

3.5.3 Complexity class:

For RSA, the three problems are polynomially equivalent. This has been shown in [FOPS] for
the case k1 > k/2 (the size of the partial pre-image is greater than half the size of the modulus).
[FOPS] relies upon lattice reduction techniques for lattices of dimension 2. The extension to
smaller k1 is shown in [CJNP] and is based on using lattices of higher dimension.

Moreover, the work of Boneh and Venkatesan [BV] shows that breaking low-exponent RSA
may not be equivalent to factoring integers. Namely, they show that an algebraic reduction from
factoring to breaking low-exponent RSA can be converted into an efficient factoring algorithm.

3.5.4 Best algorithm known

The best algorithm known for inverting RSA, i.e. for breaking the one-wayness of RSA, is to
factor the modulus.

The best algorithm known to break the one-wayness of RSA given access to an oracle which
breaks the partial one-wayness is based on lattice reduction techniques, and is described in
[FOPS, CJNP].

3.5.5 Performance record

The performance record for inverting RSA are the same as for factoring an RSA modulus.

3.5.6 Recommended key-kength

See the factoring integer section.

3.5.7 Related open problems

The strong-RSA assumption is defined as follows: given an RSA modulus N and given y ∈ ZN ,
find e, x with e ≥ 2 such that y = xe mod N . A related open-problem is to show that the
strong-RSA assumption is polynomially equivalent to the RSA assumption.
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Chapter 4

The general discrete logarithm
problem

4.1 Problem statement and parameters

Given a finite cyclic group (G, +) of order n, a generator P and a second element Q of the
group, the discrete logarithm problem consists of finding an integer x such that Q = xP . This
integer is in fact unique modulo n. In most cases relevant for cryptology, one may assume that
the group order n is known. The algorithms in this section, however, are essentially based on
exhaustive search, and can easily be modified to work even when the group order is not known,
and may in fact be used to compute it.

More generally, one may consider the discrete logarithm problem in a non-cyclic group
G, and given two elements P , Q, one may ask whether there exists an integer x such that
Q = xP . This question, however, is not relevant to cryptology, and shall not be considered
in the following. Suffice it to say that the following deterministic algorithms, due to their
resemblance to exhaustive search, may be used to solve the discrete logarithm problem in this
more general setting.

4.2 Parameters of the problem

In the most general and abstract setting, we do not make any assumptions on the particular
representation of the group elements; so we assume that only the group operations are available
to solve the problem:

Input: A finite cyclic group (G, +), its order n and two bit strings representing an element
P of order n of G and another element Q of G. The group operations are realised via calls to
oracles that

• upon input of two bit strings representing group elements return a bit string representing
their sum (addition); or

• upon input of a bit string representing a group element, returns a bit string representing
its negative (inverse); or
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• upon input of two bit strings representing group elements, returns the information whether
these two group elements are actually the same (comparison).

In a slightly more restrictive model, satisfied by all groups suggested for cryptography,
one may assume that each group element is represented by a unique bit string, and thus may
dispense with the comparison oracle.

Output: The integer x ∈ {0, . . . , n− 1} such that Q = xP .

4.3 Complexity class

Letting p denote the largest prime factor of n, Nechaev [34] and Shoup [43] have shown that the
discrete logarithm problem requires Ω(

√
p) oracle calls even if group elements are represented

by unique bit strings. Matching algorithms are known (see the following section), so that this
bound is actually tight. I think that a simple modification of Shoup’s argument shows that the
optimal algorithm in the case that a comparison oracle is required is given by exhaustive search
with a complexity of Θ(p) oracle calls.

4.4 Best algorithm known

A simple argument [35] shows that if the prime factorisation of n =
∏

pei
i is known, then the

discrete logarithm problem in G may be reduced to a series of discrete logarithm problems
in its subgroups of order pi: Chinese remaindering performs the reduction to the subgroups
of coprime order pei

i , and a Hensel lifting argument shows that the discrete logarithm in the
subgroup of order pk may be obtained from discrete logarithms in the subgroups of orders pk−1

and p. Induction concludes the argument.
We assume from now on that the group elements are represented by unique bit strings and

that no comparison oracle is needed; n may or may not be prime. There are essentially two
algorithms achieving a complexity of Θ(

√
n) group operations and Θ(

√
n log n) comparisons of

bit strings.
Shanks’s algorithm [42] is deterministic and has a space complexity of Θ(

√
n) group elements.

It proceeds in two phases. Let r = d
√

n− 1e. In the baby step phase, the multiples iP for
i = 0, . . . , r are computed and sorted (this is where the uniqueness of the representation of
the group elements is crucial). In the giant step phase, R = rP and the Q + jR for j ≥ 0 are
computed. If an element Q+jR is found in the list of baby steps, then (x+jr)P = Q+jR = iP ,
and x = i− jr mod n. Such a match occurs after at most r giant steps.

Another kind of algorithms, suggested in [36] and known under the names of “Pollard ρ”,
“Pollard λ” or “tame and wild kangaroos”, is probabilistic. In its simplest version, random linear
combinations aiP + biQ with ai, bi ∈ {0, . . . , n− 1} are formed until the same group element is
encountered twice; in that case, aiP + biQ = ajP + bjQ implies ai − aj = −(bi − bj)x mod n.
If bi − bj is coprime with n, which happens with high probability, then x = −(bi − bj)−1(ai −
aj) mod n. The birthday paradox ensures that such a collision happens on average after O(

√
n)

steps.
The interest of the randomised algorithms lies in the fact that properly implemented (re-

placing random combination by pseudorandom walks, for instance), they dispense with the
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need for storage and work essentially with constant memory. The running time analysis be-
comes heuristic, but appears to be verified in practice. Moreover, the algorithms are arbitrarily
parallelisable, with essentially no communication overhead.

4.5 Performance records

The generic algorithms have been implemented in the elliptic curve setting, see Section 6.4 for
details.

4.6 Recommended key lengths

For a security level of 2n, a key length of 2n bits is required.
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Chapter 5

Discrete Logarithms in finite fields

5.1 Parameters of the problem

The discrete logarithm problem in finite fields is the specialisation of the general discrete loga-
rithm problem of Section 4 to the multiplicative groups F∗q . These groups are always cyclic, of
cardinality n = q − 1.

Input: A finite field Fq and two elements g, h ∈ F∗p
Output: The integer x ∈ {0, . . . , q − 2} such that h = gx

5.2 Complexity class

Of course, the generic algorithms of Section 4 may be used also in the special case of finite
fields, so that if the factorisation q − 1 =

∏
pei

i is known, a trivial upper bound of the problem
complexity is given by O

(∑
ei
√

pi

)
finite field operations and O

(
log q

∑
ei
√

pi

)
comparisons of

field elements. In particular, if q− 1 is smooth (has only small prime factors), then the discrete
logarithm problem in Fq becomes easy to solve.

Otherwise, there is a close parallel between the factorisation problem and the discrete loga-
rithm problem in finite fields. In both cases, there are probabilistic algorithms relying on finding
smooth relations (identities involving small primes) and linear algebra that have a subexponen-
tial complexity.

Precisely, let for α ∈ (0, 1) and c > 0

Lq(α, c) = e(c+o(1)) (log q)α (log log q)1−α

denote the subexponential function with respect to the input size log q.
Then for q = p prime [37] or q = 2m [37, 6], there is an algorithm with complexity

Lq(1/2,
√

2) for the discrete logarithm problem in Fq. For general finite fields, an algorithm
with heuristic complexity Lq(1/2) has been given by Adleman and DeMarrais [2] (here and in
the following, we omit the precise value of the constant c).

Again for the special cases q = p or q = 2m, special algorithms (the number field sieve [21, 40]
resp. the function field sieve [1] or Coppersmith’s algorithm [8]) obtain a heuristic complexity
of Lq(1/3). The function field sieve applies as well to other fields of small characteristic. In [30],

25



26 ECRYPT — European NoE in Cryptology

the authors close the gap between these two extreme cases by suitably modifying the number
field sieve. As a result, there is an algorithm of heuristic complexity L(1/3) for all finite fields.

No lower bounds are known.

5.3 Best algorithm known

Practice matches theory in this context, since the asymptotically fastest algorithms of the pre-
vious section behave well in practice and have indeed been used to obtain the records mentioned
in the next section.

5.4 Performance records

The current record for discrete logarithms in finite prime fields is hold by Kleinjung, who has
computed them in a prime field of 530 bits [31]. For fields of characteristic 2, the record of F2613

has been obtained by Joux and Lercier [28]. An implementation for fields of characteristic 3 is
described in [19]. Joux and Lercier also hold the record for the intermediate case of a medium
degree extension of a medium characteristic prime field [29].

5.5 Recommended key lengths

A precise running time analysis and prediction for input sizes beyond those already tackled by
the number and function field sieves is rather difficult. Too many parameters would have to
be taken into account, and their optimal choice is unknown. So the only thing that can be
said with certainty is that keys have to be longer than the records mentioned in the previous
section, but of course, this is not sufficient. It appears that the discrete logarithm problem is
harder than the factorisation problem for the same key length. This is due to the fact that the
linear algebra step has to be carried out not modulo 2, but modulo q − 1. So taking the same
key lengths as for cryptosystems based on the factorisation problem seems to be a good choice.

5.6 Related open problems

It is unknown whether an algorithm of (heuristic) complexity Lq(1/3) exists that works for all
finite fields.



Chapter 6

Elliptic Curve and Algebraic Curve
Cryptography

6.1 Parameters of the problem

Let Fq be a finite field, and C a non-singular, absolutely irreducible projective curve over Fq

with a unique point at infinity, that is furthermore defined over Fq. Then the Fq-rational part
J of the Jacobian of C is a finite abelian group, in which the discrete logarithm problem is
defined as usual.

In the particular case of an elliptic curve defined over a finite field Fq, the group is given by
the points on the curve with coordinates in Fq, and the tangent-and-chord law for the addition.

6.2 Complexity class

Again, the generic algorithms of Section 4 can be applied, so if the cardinality n of the Jacobian
is smooth (it has only small prime factors), then the discrete logarithm problem in J is easy.
For an optimal security level with respect to a given parameter size, one should thus choose n
prime or almost prime with a very small cofactor.

For arbitrary elliptic curves, no other than the generic algorithms of exponential complexity
are known. Some special classes of negligible density in the set of all elliptic curves admit faster
algorithms for solving the discrete logarithm problem:

• If J has a subgroup of order p, where p is the characteristic of the base field, then the
discrete logarithm problem in this subgroup can be embedded into the additive group of
Fp, where it is solved in polynomial time by the extended Euclidian algorithm [39, 41, 44].
An analogous algorithm exists for more general curves [38].

• If J has a subgroup of prime order r not dividing q−1 and k is such that r|qk−1, then the
full group of r-torsion points on J is defined over Fqk [5]. The Tate or Weil pairing allow to
embed the discrete logarithm problem on J into the multiplicative group of Fqk [33, 16]. If
k is bounded, then the discrete logarithm problem in the finite field is subexponential (see
Section 5.2). In particular, this is true for supersingular elliptic curves, that have k ≥ 2
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over a field of characteristic different from 2 and 3, k ≥ 4 over F2m and k ≤ 6 over F3m .
Again, the same ideas apply also to more general curves [16].

For hyperelliptic curves over Fq whose genus g tends sufficiently fast to infinity, the com-
plexity of the discrete logarithm problem is bounded above by the subexponential function
Lqg(1/2). As in the case of finite fields (see Section 5.2), the corresponding algorithms form a
matrix of “smooth relations” between small prime elements and proceed by linear algebra. The
first algorithm with a conjectured subexponential running time is given in [3]. [14] describes the
first algorithm with a proven complexity, provided that g grows at least as fast as log q. See also
[13], where a general framework for subexponential discrete logarithm algorithm is developed.

A more general subexponential algorithm (with complexity L(1/2)) for discrete logarithms
in high genus curves is given in [9]. The main conditions that have to be fulfilled are that
the curve genus g tend to infinity, that there is a rational point on each curve, and that the
cardinalities of the J are bounded above by qg+O(

√
g). In particular, these conditions hold for

superelliptic curves Y a = f(X) for any fixed a (and the degree of f tending to infinity) or more
generally Ca,b curves for any fixed a (and b tending to infinity).

The most general result to date is given in [25], where the essential restrictions are that the
genus g tends to infinity and that the ratio log q/(g log g) tends to zero. No limits are placed
on the size of the Jacobian.

For curves of fixed genus, the smooth relation approach yields algorithms with an exponential
complexity, that may however be faster than the generic ones (see the following section).

The discrete logarithm in some curves (probably of negligible density) is subject to the
Weil descent algorithm [15]. Precisely, the discrete logarithm problem of a curve C defined
over Fpm with m > 1 may be embedded into the Weil restriction A of the curve, which is an
abelian variety of dimension m over Fp. Sometimes, it is possible to identify a curve on A of
comparatively low genus (optimally of genus m) [22, 4, 20, 26, 11]; in this case, the relation
generating algorithms apply, and a subexponential complexity may be derived for such special
classes of curves. The way in which hyperelliptic curves may be found on the Weil restriction is
not canonic, and for a given curve C, there is no algorithm for determining the minimal genus
of a curve on A.

No lower bound is known.

6.3 Best algorithm known

We assume that the discrete logarithm problem on J is not embeddable into the additive or
multiplicative group of a low degree extension of its field of definition Fq as described in the
previous section; otherwise said, the cardinality of J is neither q, nor does it (or its largest
prime factor) divide qk − 1 for some small k.

For the time being, let us also assume that the discrete logarithm problem is not embedded
via Weil descent into a higher dimensional abelian variety over a subfield, so that it is solved
directly in J .

For elliptic curves and curves of genus 2, the best algorithms known are the generic ones of
Section 4 of square root complexity. If the curves have an automorphism of order m whose action
is easily identified by inspection (for instance, the Frobenius endomorphism (x, y) 7→ (xp, yp) on
an elliptic curve over Fpm , multiplication by i on an elliptic curve with complex multiplication
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by Z+Zi or multiplication by ζ3 on an elliptic curve with complex multiplication bz Z+Z1+
√

3
2 ),

then the algorithms may be sped up by a factor of
√

m by identifying orbits of the endomorphism
[10].

In [17], it is noted that in hyperelliptic curves of fixed and sufficiently large genus, the
relation collecting algorithms, while still exponential, have in fact a better complexity than the
generic ones. The algorithm extends trivially to the setting of more general curves, and later
refinements [45, 23] arrive at a complexity of O(q2−2/g) for a curve of genus g defined over Fq.
This is better than generic square root algorithms, of complexity O(qg/2), as soon as g ≥ 3.

In [12], this method is improved in the case where the curve has an equation of low degree.
In particular, for non-hyperelliptic curves of genus 3, the complexity drops to O(q).

Furthermore, [18] presents an algorithm for elliptic curves over extension fields Fqm with
m > 1 that does not rely on Weil descent and in theory works for all such curves. The use of
Gröbner basis computations seems to restrict the algorithm in practice to m ≤ 4. It attains the
same complexity as the algorithms of the previous paragraph, so that the discrete logarithm
problem in elliptic curves defined over fields Fp3 and Fp4 becomes easier than over prime fields
or quadratic extensions, for a comparable group size. Claus Diem has noticed (presentation
at the 8th Workshop on Elliptic Curve Cryptography, ECC 2004) that letting tend p and m
to infinity suitably at the same time, one obtains a family of curves for which the discrete
logarithm problem can be solved in subexponential time L(3/4).

6.4 Performance records

All records obtained for computing elliptic curve discrete logarithms have used a generic, paral-
lelised birthday paradox algorithm as explained in Section 4. The problem instances are those
provided by the Certicom challenge [7].

The record for a general discrete logarithm computation on an elliptic curve over a finite
prime field was set in 2002, and is for a curve of 109 bits. The same team successfully computed
a discrete logarithm on a curve over a field of characteristic 2 of the same bit size in 2004.

Concerning relation collecting algorithms, the current record is set in [17] for a hyperelliptic
curve of genus 6 over F223 corresponding to about 138 bits. The more advanced algorithms of
[45, 23] have not been used to set records; their main merit is to yield precise recommendations
for key sizes.

6.5 Recommended key lengths

For elliptic curves over fields of the form Fp or Fp2 or hyperelliptic curves of genus 2 over Fp, the
recommendations of Section 4 apply: a security of 2n group operations is obtained with a key of
2n bits. In the case of a Koblitz curve, that is, a curve over F2m that is defined already over F2,
one roughly needs to add an additional log2 m bits to compensate the Frobenius automorphism.

Taking [23, 18] into account, the key size has to be multiplied by a factor of 9/8 for elliptic
curves over Fp3 or hyperelliptic curves of genus 3, and by a factor of 4/3 for elliptic curves over
Fp4 or curves of genus 4. For non-hyperelliptic curves of genus 3, due to [12] the key size should
be multiplied by a factor of 3/2.
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6.6 Related open problems

As for general finite fields, it remains an open problem to find an algorithm for the discrete
logarithm in some class of curves with a complexity of L(1/3). Another question is whether the
discrete logarithm problem for elliptic curves with complex multiplication by a small discrimi-
nant is easier to solve than in the general case.
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[46] Emmanuel Thomé. Computation of discrete logarithms in F2607 . In Colin Boyd, editor,
Advances in Cryptology — ASIACRYPT 2001, volume 2248 of Lecture Notes in Computer
Science, pages 107–124, Berlin, 2001. Springer-Verlag.



Chapter 7

Lattice reduction

7.1 Problem statement

Let L be a full-rank lattice in Zn (see [16, 14] for a bibliography on lattices). Denote by ‖.‖ the
Euclidean norm in Rn The two most famous lattice problems are the shortest vector problem
(SVP) and the closest vector problem (CVP):

• SVP: Given an arbitrary basis of L, find a shortest vector of L, that is, find a non-zero
~x ∈ L such that ‖~x‖ is minimal. Approximating SVP to within a factor k means finding a
non-zero ~y ∈ L such that ‖~y‖ ≤ k‖~x‖, where ~x is a shortest vector.

• CVP: Given an arbitrary basis of L and a target vector ~t ∈ Qn, find a lattice vector closest
to ~t, that is, find ~x ∈ L minimizing ‖~x− ~t‖ among all lattice vectors.

7.2 Parameters of the problem

There are two lattice parameters: the lattice dimension n and the size log B of the lattice basis
defining the lattice (that is, the number of bits required to store the matrix corresponding to the
lattice basis). The parameter defining the hardness of lattice problems is the lattice dimension
n.

7.3 Complexity class

Complexity results are asymptotic results when the lattice dimension increases. CVP is NP-
hard. Approximating CVP to within a quasi-polynomial factor 2log1−ε n is NP-hard [3, 4]. SVP
is NP-hard under randomized reductions [1]. Approximating SVP to within a constant is also
NP-hard under randomized reductions [13].

CVP seems to be a more difficult problem than SVP. CVP cannot be easier than SVP:
given an oracle that approximates CVP to within a factor f(n), one can approximate SVP in
polynomial time to within the same factor f(n). Reciprocally, Kannan proved in [12, Section 7]
that any algorithm approximating SVP to within a non-decreasing function f(d) can be used
to approximate CVP to within n3/2f(n)2.
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However, NP-hardness results for SVP and CVP have limits. Goldreich and Goldwasser [5]
showed that approximating SVP or CVP to within

√
n/ log n is not NP-hard, unless the

polynomial-time hierarchy collapses, which is considered unlikely.

7.4 Best algorithm known

The best provable algorithm known for solving SVP exactly is the AKS sieving algorithm [2],
which is a probabilistic algorithm running in time 2O(n). For exact CVP, the best algorithm
remains Kannan’s super-exponential algorithm [10, 11], with running time 2O(n log n) (see also [8]
for an improved constant).

However, in practice, one rather uses more efficient approximation algorithms, and hope
that the output is the shortest lattice vector. The best provable polynomial-time approxima-
tion algorithm is Schnorr’s block Korkine-Zolotorev (BKZ) algorithm [17] coupled with the
AKS algorithm [2]: its approximation factor is 2O(n(log log n)2/ log n), which is subexponential.
Experimentally, the best approximation algorithm seems to be the heuristic Schnorr-Hrner al-
gorithm [18], which is a variant of BKZ, and which is implemented in NTL [19]. No good
prediction on the behaviour of the algorithm is known.

7.5 Performance records

The largest lattice problem ever solved seem to be: the 350-dimensional GGH [7] lattice [15]
and the 214-dimensional NTRU lattice [9] (corresponding to NTRU-107 parameters). Those
records used very limited computational power: a single computer for a few days at most.

7.6 Recommended key lengths

It is very hard to make any recommendation, because the behaviour of lattice basis reduction
algorithms is not very well-understood at the moment. The authors of the NTRU cryptosys-
tem [9] now recommend to use a lattice of dimension ≥ 500, based on their own experiments
with NTL [19]. The lattices used in NTRU have a special form: it is unknown if such a form
can be exploited by lattice basis reduction algorithms.

7.7 Related open problems

Lattice problems are connected with coding problems.
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Chapter 8

Systems of polynomial equations in
finite field

8.1 Problem statement

Let F be a finite field of prime characteristic with q := |F| elements. In particular, q is a
prime-power. Let n ∈ N be the number of variables, m ∈ N the number of equations, and d ∈ N
the degree of the system. Moreover, let x1, . . . , xn be variables over F. By convention, we set
x0 := 1, i.e. the multiplicative neutral in F. Furthermore, we define

Vd
n :=

{
{0} for d = 0
{v ∈ {0, . . . , n}d : i ≤ j ⇒ vi ≤ vj} otherwise

where we denote components of the vector v by v1, . . . , vd ∈ {0, . . . , n}. We are now able to
state our problem. Let P be a system of m polynomials in n variables with maximum degree
d ∈ N each, i.e. we have P := (p1, . . . , pm) where all pi have the form

pi(x1, . . . , xn) :=
∑
v∈Vd

n

γi,v

d∏
j=1

xvj for 1 ≤ i ≤ m

with the coefficients γi,v ∈ F and vectors v ∈ Vd
n.

For any q and d = 2, we speak about the problem of Multivariate Quadratic equations and
denote the class of corresponding polynomial vectors with MQm(Fn). As we will see below, this
class plays an important role for the construction of public key schemes based on the problem
of polynomial equations in finite fields. Therefore, we give the polynomials pi explicitly for this
case:

pi(x1, . . . , xn) :=
∑

1≤j≤k≤n

γi,j,kxjxk +
n∑

j=1

βi,jxj + αi

for 1 ≤ i ≤ m, 1 ≤ j ≤ k ≤ n, and the coefficients γi,j,k, βi,j , αi ∈ F. In the case of d = 2, we
call them quadratic (γi,j,k), linear (βi,j), and constant (αi) coefficients, respectively.
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8.2 Parameters of the problem

The problem has the parameters degree d ∈ N, field-size q = pk for k ∈ Z+ and p a prime
number. Moreover, we have the number of variables n ∈ N and the number of equations m ∈ N.

8.3 Complexity class

Degree 0

For degree 0, the problem becomes trivial as there are no variables anymore. Hence, it is not
possible to find a satisfying assignment for a given formula.

Degree 1

In the case of degree 1, the problem coincides with the well-studied linear and affine equations
over finite fields. They can be solved in O(n3) (assuming n = m) using Gaussian elimination
and O(nω), with 2 ≤ ω ≤ 3, in the case of sparse equations or using Strassen’s algorithm.

Degree ≥ 2

With d ≥ 2 and for any admissible q, the problem becomes NP-complete (cf see [GJ79, p. 251]).
The case of d ≥ 3 equations has been treated in [AY79] with reference to an unpublished
manuscript for the degree 2 case. To the knowledge of the authors, the first published proof of
the case d = 2 appeared in [PG97, Appendix]; the paper also includes d ≥ 2. A more detailed
proof of the general case can be found in [Wol02, Sect. 3.2].

Quantum complexity class

At present, there are no results known for the solvability of this problem in degree 2 or higher
using quantum algorithms.

8.4 Best algorithms known

For the case n ≤ m, the algorithms F5 and F5/2 are most powerful [Fau02b, FJ03]. They are
based on Gröbner basis computation, cf [ALW95] for an introduction to Gröbner bases.

In the underdetermined case, i.e. for n > m, the algorithms described in [CGMT02] out-
perform Gröbner basis computations.

8.5 Performance records

In 2002, Faugère reported in [Fau02a] that he broke HFE Challenge 1. The parameters where
d = 2, n = 80, m = 80. He used the algorithm F5/2 for this purpose (cf Sect. 8.4). According
to [Fau02a], it took one AlphaServer DS20E (EV68 833 Mhz) and 4 GB of RAM a total of 96
hours of computing time, to break HFE Challenge 1.

In 2004, Steel showed that the Magma [MAG] implementation of the F4-algorithm outper-
forms Faugère’s own F5/2 implementation, cf [Ste]. He reports the use of a Sun V20Z with one
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Opteron 248 processor (2.2GHz, 1MB L2 cache) and 8GB memory. The computations took
6.93 hours and needed 8.07GB of memory.

Timings for random systems, i.e., systems without a hidden trapdoor, are given in [Fau03,
p. 9]. We quote the corresponding results. They have been achieved on a Pentium III 700 MHz
(the memory-requirement is not given).

Algorithm \ n 14 16 18 19 21 33
F4 2.4 [s] 12.3 [s] 70.5 [s] 133.2 [s] 436.9 [s]
F5/2 0.9 [s] 1.5 [s] 4.25 [s] 442.7 [s]

Hence, breaking HFE Challenge 1 was only possible as the trapdoor imposed a special structure
on the system of Multivariate Quadratic equations, which were hence easy to solve.

Finding related messages

Let d = 2, i.e., we are now in the case of multivariate quadratic equations. Assume we know
some δ ∈ Fn such that x′ = x + δ for two unknown x, x′ ∈ Fn. This case has been described in
[Pat96, Sect. 3, “Attack with related messages”]. It is shown that it can be solved in polynomial
time — in particular O(n3) if normal Gaussian elimination is used or O(nlog2 7) with Strassen’s
algorithm.

8.6 Recommended key-length

The key-length in a system based on the intractability of the simultaneous solving of multivari-
ate, non-linear equations can be computed using the following formulas. First, we define

τd(Fn) :=
d∑

i=0

τ(i)(Fn)

for the number of terms in a single polynomial equation over F, degree d and in n variables.
Here, we have

τ(d)(Fn) :=

{∑min(|F|−1,d)
i

(
n
i

)
for d > 0

1 for d = 0

for the number of terms for all degrees. For the correctness of the above formula, we want to
point out that we have xq = x with q := |F| in all finite fields.

As previously stated, the case ofMultivariateQuadratic equations, i.e., d = 2 is particularly
important for practical applications. Hence, we give the corresponding formula explicitly for
this case:

τ(n) :=


1 + n + n(n−1)

2 = 1 + n(n+1)
2 if F = GF (2)

1 + n + n(n+1)
2 = 1 + n(n+3)

2 otherwise .

We are now able to give some recommended key-sizes as function

size(F, n,m, d) := mτd(Fn) log2 q .
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In general, we obtain a key-length of O(mnd) for the public key. However, we want to stress
that the correct choice of parameters — and hence the sizes achieved — depend heavily on
the intractability of the corresponding trapdoor-problem. Hence, we have to specify the recom-
mended key-length in terms of the trapdoor-function used. For this subsection, we concentrated
on trapdoors which are known since at least 5 years, so we may assume that their security is
well understood by the cryptographic research community.

No Trapdoor

Strictly speaking, this cannot be used to construct a public key scheme. However — keeping the
limitations of Sect. 8.5 in mind — we can use this problem to “benchmark” other problems in
terms of minimal key sizes possible and also to construct a one-way-function, i.e., the problem
to find x ∈ Fn for given y ∈ Fm.

q n m Key Size (kByte)
16 42 42 12.5
128 37 37 23

The values given above are rather conservative as we are not aware of a systematic study
on the intractability of random systems of equations, employing different algorithms. Hence,
we expect these values to drop considerably as soon as such a study has been carried out.

C*–

We suggest the parameter from Sflashv3 here [CGP02]:

q n m Key Size (kByte)
128 67 56 112.3

HFE-

We use the parameter from a tweaked version of Quartz [CGP01, WP04]:

q n m Key Size (kByte)
2 107 100 71

UOV

We use the parameter from [KPG03], taking the attacks from [CGMT02, BWP05] into account:

q n m Key Size (kByte)
16 32 16 9
16 48 16 16
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8.7 Related open-problems

8.7.1 Isomorphism of Polynomials

For the construction of secure public key systems based on polynomial equations over finite
fields, the security of the IP-problem [Pat96], i.e., the difficulty to find affine transformations
S ∈ AGLn(F) and T ∈ AGLm(F) such that P = T ◦P ′ ◦S for given polynomial vectors P,P ′ is
also important. In particular, the private key in such systems is usually the triple (S,P ′, T ) and
the public key the polynomial vector P. Hence, if the IP-problem were easy, the security of these
schemes would be seriously jeopardized. Hence, these constructions have to make the (often not
explicitly stated) assumption that the corresponding IP-problem is difficult. However, if P ′ has
a special structure — as it is the case for all systems based on the difficulty of solving a system
of polynomial equations over a finite field — it is possible that the corresponding IP-problem
becomes easy and the system can be broken that way, cf [KS98, GC00, WBP04].

A discussion of the security of the general IP-problem can be found in [Pat96, PGC98,
GMS02, LP03]. In particular, [LP03] shows that the IP-problem with one secret, i.e., T is
given or the identity transformation, can be solved if m ≥ n, i.e., the number of variables does
not exceed the number of variables.

8.7.2 MinRank

Let (M1, . . . ,Mk) be a sequence of k ∈ N matrices over Fn×n each. Moreover, let r ∈ N. For
the MinRank-problem, we are interested in finding a linear combination of the above matrices,
i.e., a vector λ ∈ Fk such that

Rank(
k∑

i=1

λiMi) ≤ r .

The above problem has been shown to be NP-complete when stated over finite fields [BFS96].
In special cases, namely when the rank r is extremely small or the maximal rank R ∈ N of the

matrices M1, . . . ,Mk is very close to n, the problem becomes tractable. In particular, [GC00]
gives two algorithms with complexity O(qr) and O(qn−R), respectively, for these two special
cases. The question if a more efficient algorithm for these cases or even the general MinRank-
problem exists remains open. A positive answer would have serious consequences for the security
of several schemes based on the MQ-problem as the MinRank-problem has been used in the
cryptanalysis of several systems, e.g., in [CSV93, CSV97, KS98, KS99, GC00, WBP04].
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Chapter 9

Codes

9.1 Decoding in an arbitrary linear code

9.1.1 Problem statement:

We are given a linear code C of length n and dimension k over Fq, for instance by means of a
genarator matrix G. Given y in Fn

q at distance t or less from C, it is difficult to find x in C such
that dH(x, y) ≤ t (where dH(x, y) denotes the Hamming distance between x and y).

9.1.2 Parameters of the problem:

Parameters are a linear code of length n and dimension k (given by its generator or parity
check matrix) and a number of errors t to be corrected. In order to keep the problem difficult
t must not be too large or too small. Most code-based cryptosystems use binary Goppa codes
where t = (n − k)/log2n. More generally t = f(n, k) must be “reasonably” increasing with
n−k. Determining exactly which functions f() lead to a difficult problem is not a fully resolved
problem [5].

9.1.3 Complexity class:

The problem is closely related to Syndrome decoding problem [2] which was proven NP-complete.
The Goppa bounded decoding problem is also NP-complete (see [5], the same proof as [2] applies):

Goppa Bounded Decoding
Instance: An r × n binary matrix H and a word s of Fr

2.
Question: Is there a word e in Fn

2 of weight ≤ r/ log2 n such that HeT = s?

(the matrix H above is a parity check matrix and r = n− k).

9.1.4 Best algorithm known:

Decoding in an arbritrary linear code is an old problem in algorithmic coding theory, a complete
review can be found in [1]. The best known algorithm to address cryptographic sizes is due to
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Canteaut and Chabaud [3]. Its complexity is exponential (more details in [15])

exp
((

ln
n

n− k

)
n− k

log2 n
(1 + o(1))

)
.

9.1.5 Performance records:

The parameters proposed by McEliece [12] for his public key encryption scheme were n = 1024
and t = 50 (thus k = n − t log2 n = 524). The binary work factor of Canteaut-Chabaud’s
algorithm can be accurately estimated for a given set of parameters, for the original parameters
we get ≈ 264 binary operations. With an actual implementation, this would not require more
than a few centuries of CPU time.

9.1.6 Recommended key-length:

To resist to the above attack, the length must be raised to n = 2048 and t must be at least 30
(see [16]).

9.1.7 Related open-problems:

The worst case complexity is known (the problem is NP-hard). Though in practice all instances
are difficult, nothing is known about the average-case complexity of bounded decoding problems.
Proving average case completeness [10, 7, 6] would considerably improve the formal security
reduction of code-based cryptosystems.

9.2 Pseudo-randomness of binary Goppa codes

9.2.1 Problem statement:

Binary Goppa codes are used in code-based cryptosystems. Obviously, decoding in an arbitrary
binary Goppa code is not the same thing as decoding in an arbitrary linear code. To reduce the
security of those systems to the difficulty of decoding in a linear code, one must somehow argue
that the public key of the system (a generator matrix for instance) “looks random”, even though
it comes from a known class and has just been shuffled to remove any apparent structure.

This leads to the following statement: given a k× n binary matrix G (with k = n− t log2 n
for some t), it is difficult to decide whether or not G is a generator matrix of some binary Goppa
code.

9.2.2 Parameters of the problem:

Two positive integers t, m and a binary k × n matrix where n ≤ 2m and k = n− tm. Usually
n is chosen to be equal to 2m but smaller values are possible to tune the matrix size.

9.2.3 Complexity class:

It is possible to state an NP problem:
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Goppa Code Distinguishing
Instance: An r × n binary matrix H.
Question: Is H the parity check matrix of some binary Goppa code?

but nothing is known about it.

9.2.4 Best algorithm known:

The best known technique to solve the problem (for length n = 2m) is to enumerate all Goppa
codes of given support and then to test equivalence with the support splitting algorithm [11, 14].
The algorithmic complexity is O(2tm/tm). In practice, as far as code-based cryptosystems are
concerned, this attack is always less effective than decoding attacks.

9.2.5 Recommended key-length:

As mentionned above, this attack is not the most threatening for code-based systems. For a
binary workfactor of 286, a system that would depend on this problem alone would require to
have tm > 93. For instance t = 9 and n = 2m = 211 = 2048 or t = 6 and n = 2m = 216.

9.2.6 Related open-problems:

The problem is related with the existence of code invariants computable with low (polynomial)
complexity. An invariant is a property of a code which remains the same when the code
coordinates are permuted. Very few invariants can be computed in polynomial time. Actually,
if we except trivial invariants (length, dimension, even weight), the only known polynomial
time invariant is the weight distribution of the hull [13, 14]. All others are at least NP-hard
(minimum distance, weight enumerator, . . . ). Finding new invariants computable in polynomial
time would be a remarquable achievement in coding theory with potential consequences on the
security of code-based systems. Negative results, like proving the absence of easy invariants
(see Vertigan’s work for instance [18]), would also be of great interest.

9.3 Decoding in a Reed-Solomon code

9.3.1 Problem statement:

We are given a Reed-Solomon code, defined as an evaluation code. Given a support D =
{α1, . . . , αn} ⊂ Fq, it has a length n, a dimension k and a minimum distance n − k + 1, and
is defined over the field Fq. We denote this code by RSk(D). Let y ∈ Fn

q be given, and w an
integer be given, the problem is to find x in the Reed-Solomon code, such that dH(x, y) ≤ w,
where dH(x, y) denotes the Hamming distance betwenn x and y. It is simply the decoding
problem in the case of Reed-Solomon codes.

9.3.2 Parameters of the problem:

Parameters are the support (which defines the length and the alphabet Fq), k the dimension,
and t the decoding radius. It can be decided that the support is a given mathematical set,
such as, for instance, the set of n-th roots of unity over a given finite field. In such a case, the
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sole paramaters q and k are enough to specify the code, and there is no need for a generating
matrix.

9.3.3 Complexity class:

Maximum likelihood decoding of Reed-Solomon has recently been shown to be a NP-complete
problem [9]. It is the only sub instance of Maximum likelihood decoding known to be hard. The
problem is:

Problem: Maximum Likelihood decoding of Reed-Solomon codes
Instance: An integer m > 0, a set D = {x1, . . . , xn} consisting of n distinct elements
of F2m , an integer k > 0, a target vector y ∈ Fn

2m , and an integer w > 0.
Question: Is there a codeword c ∈ RSk(D), such that d(c, y) ≤ w.

Note that the support is part of the problem, and it remains to show the same hardness result
in the case of mathematically specified subset, like, as above, the set of n-th root of unity.

9.3.4 Best algorithm known:

The main difference with respect to algorithms for solving the syndrom decoding problem, is
that the size of the alphabet is growing with the input size. There has not been as much
research for the q-ary case as for the binary case, for which many improvements are known.
We think that the best algorithms are Information Set based decoding algorithms, which are
of exponential nature. Yet, generalisation of Sudan-like algorithms [17, 8], to large decoding
radius, remain to be investigated.

9.3.5 Performance records:

None reported, since the problem has not been seriously tackled.

9.3.6 Related open-problems:

Surpringly, a connection to the problem of solving discrete logarithms in a finite field has been
made in [4]. Precisely the following Theorem holds

Theorem. If there exists an algorithm solving the list-decoding problem of a Reed-
Solomon code of parameters [n, k]q, for a decoding radius n− ĝ(n, k, q), in time qO(1),
then there exists an algorithm solving the discrete logarithm problem in time qO(1) in
the field Fqĝ(n,k,q)−k . where ĝ(n, k, q) is a parameter, known to be smaller than

√
nk (i.e.

Sudan-like algorithms do not apply for this range of parameters).
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